- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
11
- Author / Contributor
- Filter by Author / Creator
-
-
Schneider, Morgan E (2)
-
Aikins, oshua (1)
-
Alford, A Addison (1)
-
Bell, Tyler M (1)
-
Biggerstaff, Michael I (1)
-
Blind-Doskocil, Leanne (1)
-
Bodine, David (1)
-
Bodine, David J (1)
-
Bruning, Eric (1)
-
Cheong, Boonleng (1)
-
Chmielewski, Vanna C (1)
-
Coffer, Brice (1)
-
Coniglio, Michael C (1)
-
Dawson, Daniel T (1)
-
Elmore, Kim (1)
-
French, Michael (1)
-
Fulton, Caleb J (1)
-
Griffin, Casey B (1)
-
Knupp, Kevin R (1)
-
Kollias, Pavlos (1)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Due to differences between air and debris motions, debris centrifuging creates bias in wind estimates based on Doppler velocities and radar wind retrievals in tornadoes. Anomalous radial divergence, azimuthal wind underestimation, and vertical velocity bias associated with debris centrifuging can lead to erroneous interpretations of tornado intensity and structure from radar data. A novel spectral velocity correction technique is developed to reduce bias by identifying rain and debris motion in radar signals using dual-polarization spectral density estimation and fuzzy logic classification. This technique successfully improves Doppler velocity estimates in simulated S-band polarimetric time series data, although debris concentration modulates both the magnitude and correctability of velocity bias. Large bias magnitudes associated with high debris concentrations are the most difficult to fully correct using this technique, especially at low elevation angles and near the center of the tornado. However, the magnitudes of corrections applied are proportional to the original bias magnitudes, suggesting that the technique performs consistently across low and high debris concentrations. Spectral correction results in an overall 84% reduction in bias in simulations. The spectral correction technique is also applied to dual-polarization S-band radar observations of the 20 May 2013 Moore, Oklahoma tornado. Overall increases in Doppler velocity magnitudes, especially at lower elevation angles, imply that spectral correction can successfully reduce centrifuging bias in observed Doppler velocities.more » « lessFree, publicly-accessible full text available June 12, 2026
-
Kosiba, Karen A; Lyza, Anthony W; Trapp, Robert J; Rasmussen, Erik N; Parker, Matthew; Biggerstaff, Michael I; Nesbitt, Stephen W; Weiss, Christopher C; Wurman, Joshua; Knupp, Kevin R; et al (, Bulletin of the American Meteorological Society)Abstract Quasi-linear convective systems (QLCSs) are responsible for approximately a quarter of all tornado events in the U.S., but no field campaigns have focused specifically on collecting data to understand QLCS tornadogenesis. The Propagation, Evolution, and Rotation in Linear System (PERiLS) project was the first observational study of tornadoes associated with QLCSs ever undertaken. Participants were drawn from more than 10 universities, laboratories, and institutes, with over 100 students participating in field activities. The PERiLS field phases spanned two years, late winters and early springs of 2022 and 2023, to increase the probability of intercepting significant tornadic QLCS events in a range of large-scale and local environments. The field phases of PERiLS collected data in nine tornadic and nontornadic QLCSs with unprecedented detail and diversity of measurements. The design and execution of the PERiLS field phase and preliminary data and ongoing analyses are shown.more » « less
An official website of the United States government
